自適應(yīng)光學(xué)系統(tǒng)通常使用波前矯正器實(shí)現(xiàn)高精度光學(xué)相位補(bǔ)償,空間分辨率高、能耗低、體積小、易于控制、價(jià)格低廉,成為波前校正器主要發(fā)展方向。
自適應(yīng)光學(xué)(Adaptive optics, AO)是補(bǔ)償由大氣湍流或其他因素造成的成像過程中波前畸變的有前景的技術(shù)。
中國科學(xué)院光電技術(shù)研究所饒長(zhǎng)輝研究團(tuán)隊(duì)成功研制國內(nèi)首套地表層自適應(yīng)光學(xué)(Ground Layer Adaptive Optics, GLAO)試驗(yàn)系統(tǒng),與云南天文臺(tái)1米新真空太陽望遠(yuǎn)鏡對(duì)接后,于2016年1月首次獲得了太陽黑子和太陽米粒的大視場(chǎng)高分辨力自適應(yīng)光學(xué)校正圖像,標(biāo)志著我國太陽自適應(yīng)光學(xué)技術(shù)再次取得重大突破。
自適應(yīng)光學(xué)(英語:Adaptive optics,AO)是一項(xiàng)使用可變形鏡面矯正因大氣抖動(dòng)造成光波波前發(fā)生畸變,從而改進(jìn)光學(xué)系統(tǒng)性能的技術(shù)。自適應(yīng)光學(xué)的概念和原理早在1953年由海爾天文臺(tái)的胡瑞斯·拜勃庫克(Horace Babcock)提出的,但是超越了當(dāng)時(shí)的技術(shù)水平所能達(dá)到的極限,只有美國軍方在星球大戰(zhàn)計(jì)劃中秘密研發(fā)這項(xiàng)技術(shù)。冷戰(zhàn)結(jié)束后,1991年5月,美國軍方將自適應(yīng)光學(xué)的研究資料解密,計(jì)算機(jī)和光學(xué)技術(shù)也足夠發(fā)達(dá),自適應(yīng)光學(xué)技術(shù)才得以廣泛應(yīng)用。配備自適應(yīng)光學(xué)系統(tǒng)的望遠(yuǎn)鏡能夠克服大氣抖動(dòng)對(duì)成像帶來的影響,將空間分辨率顯著提高大約一個(gè)數(shù)量級(jí),達(dá)到或接近其理論上的衍射極限。第一臺(tái)安裝自適應(yīng)光學(xué)系統(tǒng)的大型天文望遠(yuǎn)鏡是歐洲南方天文臺(tái)在智利建造的3。6米口徑的新技術(shù)望遠(yuǎn)鏡。越來越多的大型地面光學(xué)/紅外望遠(yuǎn)鏡都安裝了這一系統(tǒng),比如位于夏威夷莫納克亞山的8米口徑雙子望遠(yuǎn)鏡、3。6米口徑的加拿大-法國-夏威夷望遠(yuǎn)鏡、10米口徑的凱克望遠(yuǎn)鏡、8米口徑的日本昴星團(tuán)望遠(yuǎn)鏡等等。自適應(yīng)光學(xué)已經(jīng)逐步成為各大天文臺(tái)所廣泛使用的技術(shù),并為下一代更大口徑的望遠(yuǎn)鏡的建造開辟了道路。
自從天文望遠(yuǎn)鏡誕生400年以來,它從小型手控的光學(xué)器材發(fā)展到由計(jì)算機(jī)控制的龐大復(fù)雜儀器。其間,有兩個(gè)參數(shù)極其重要:望遠(yuǎn)鏡的口徑(聚光能力)和角分辨率(圖像的清晰度)。對(duì)于一架在太空中使用的性能好的望遠(yuǎn)鏡來說,分辨率直接與口徑的倒數(shù)成正比。從遙遠(yuǎn)星球發(fā)出的平面波波前將被望遠(yuǎn)鏡轉(zhuǎn)換成更好的球面波波陣面從而成像。像的角分辨率只受到衍射的限制--我們可以稱之為衍射極限。
實(shí)際上大氣的影響和望遠(yuǎn)鏡的質(zhì)量問題都會(huì)扭曲球面波前,造成成像過程中的相位錯(cuò)誤。即使是在好的觀測(cè)地點(diǎn),地面上可見光波段望遠(yuǎn)鏡的角分辨率都無法超過10到20厘米口徑的望遠(yuǎn)鏡,這僅僅是因?yàn)榇髿馔牧鞯木壒?。?duì)于一臺(tái)口徑四米的望遠(yuǎn)鏡來說,大氣湍流使其空間分辨率降低了一個(gè)數(shù)量級(jí)(與衍射極限相比),同時(shí)星像中心的清晰度降低了100多倍。這源于大氣擾動(dòng)造成的波前在時(shí)間和空間的不穩(wěn)定--也是人類發(fā)送哈勃到太空進(jìn)行觀測(cè)的的主要原因--避免大氣湍流的影響。